一、细胞减数分裂时,叶绿体中的DNA到哪里去了
卵母细胞减数分裂时,叶绿体会直接进入成型的卵细胞中,随之,DNA也进入卵细胞中,减数分裂只是相对于核DNA而言的,叶绿体DNA不会有什么变化,直接进入卵细胞中。
二、PSP《寄生前夜~第三次生日》的DNA是什么意思啊,怎么弄啊,要详细点的解释
说白了,就是通过向敌人OD得到新的DNA,然后通过组合,是自己的技能等级升高
关于技能颜色问题
紫色技能是在变身状态下发动(也就是强化变身用的)
蓝色技能是一般状态发动比较高(就是好像基本技能,在什么时候下都可能发动的)
黄色技能是OD技能在你使用意识移动或odkill时候会发动
绿色技能是集体技能?就是你和npc联动时候会发动,主要也就是集中射击而已
红色。不知道怎么说,一切都弱化,但是通过它容易生成新的技能
具体你可以看电玩巴士的寄身前夜第三次生日专题站
三、染色体,姐妹染色单体,DNA分子怎么区别???
染色体:在细胞分裂期,细胞核内长丝状的染色质高度螺旋化,缩短变粗,就形成了光学显微镜下可以看见的染色体。
姐妹染色单体:染色体在细胞有丝分裂(包括减数分裂)的间期进行自我复制,形成由一个着丝点连接着的两条完全相同的染色单体。(若着丝点分裂,则就各自成为一条染色体了)。每条姐妹染色单体含1个DNA,每个DNA一般含有2条脱氧核苷酸链。
1)染色体的数目=着丝点的数目。2)DNA数目的计算分两种情况:①当染色体不含姐妹染色单体时,一个染色体上只含有一个DNA分子;②当染色体含有姐妹染色单体时,一个染色体上含有两个DNA分子。
1、染色质、染色体和染色单体的关系:第一,染色质和染色体是细胞中同一种物质在不同时期细胞中的两种不同形态。第二,染色单体是染色体经过复制(染色体数量并没有增加)后仍连接在同一个着点的两个子染色体(姐妹染色单体);当着丝点分裂后,两染色单体就成为独立的染色体(姐妹染色体)。
2、染色体数、染色单体数和DNA分子数的关系和变化规律:细胞中染色体的数目是以染色体着丝点的数目来确定的,无论一个着丝点上是否含有染色单体。在一般情况下,一个染色体上含有一个 DNA分子,但当染色体(染色质)复制后且两染色单体仍连在同一着丝点上时,每个染色体上则含有两个DNA分子。
在人教版生物书高二上有详细的讲解。
四、从s型活细菌中提取了dna的是谁
艾弗里
1944年,美国科学家艾弗里和他的同事,从S型活细菌中提取了DNA、蛋白质和多糖等物质,然后将他们分别加入培养R型细菌的培养基中,结果发现加入DNA的培养基中,R型细菌转化成了S型细菌,而加入蛋白质、多糖等物质的培养基中,R型细菌不能发生这种转化。
五、DNA和RNA TNA 的关系
酸分为脱氧核糖核酸DNA和核糖核酸RNA两种
没听说过tna,不过倒是有TRNA
可用同位素 标记 腺嘌呤等方法区别DNA和核糖核酸RNA
脱氧核糖核酸(DNA,为英文Deoxyribonucleic acid的缩写),又称去氧核糖核酸,是染色体的主要化学成分,同时也是组成基因的材料。有时被称为“遗传微粒”,因为在繁殖过程中,父代把它们自己DNA的一部分复制传递到子代中,从而完成性状的传播。原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种性状的几乎所有蛋白质和RNA分子的全部遗传信息;编码和设计生物有机体在一定的时空中有序地转录基因和表达蛋白完成定向发育的所有程序;初步确定了生物独有的性状和个性以及和环境相互作用时所有的应激反应.除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA,极少数为RNA.
核糖核酸(简称RNA)
RiboNucleic Acid
由至少几十个核糖核苷酸通过磷酸二酯键连接而成的一类核酸,因含核糖而得名,简称RNA。RNA普遍存在于动物、植物、微生物及某些病毒和噬菌体内。RNA和蛋白质生物合成有密切的关系。在RNA病毒和噬菌体内,RNA是遗传信息的载体。RNA一般是单链线形分子;也有双链的如呼肠孤病毒RNA;环状单链的如类病毒RNA;1983年还发现了有支链的RNA分子。
结构
1965年R.W.霍利等测定了第 1个核酸——酵母丙氨酸转移核糖核酸的一级结构即核苷酸的排列顺序。此后,RNA一级结构的测定有了迅速的发展。到1983年,不同来源和接受不同氨基酸的tRNA已经弄清楚一级结构的超过280种,5S RNA 175种,5.8S RNA也有几十种,以及许多16S rRNA、18S rRNA、23S rRNA和26S rRNA。在mRNA中,如哺乳类珠蛋白mRNA、鸡卵清蛋白mRNA和许多蛋白质激素和酶的mRNA等也弄清楚了。此外还测定了一些小分子RNA如sn RNA和病毒感染后产生的RNA的核苷酸排列顺序。类病毒RNA也有5种已知其一级结构,都是环状单链。MJS2RNA、烟草花叶病毒 RNA、小儿麻痹症病毒RNA是已知结构中比较大的RNA。
除一级结构外,RNA分子中还有以氢键联接碱基(A对U;G对C)形成的二级结构。RNA的三级结构,其中研究得最清楚的是tRNA,1974年用X射线衍射研究酵母苯丙氨酸tRNA的晶体,已确定它的立体结构呈倒L形(见转移核糖核酸)。
RNA 一级结构的测定常利用一些具有碱基专一性的工具酶,将RNA降解成寡核苷酸,然后根据两种(或更多)不同工具酶交叉分解的结果,测出重叠部分,来决定RNA的一级结构。举例如下:
AGUCGGUAG
牛胰核糖核酸酶 高峰淀粉酶核糖核酸酶T1
(RNase A) (RNase T1)
AGU+C+GGU+AG AG+UCG+G+UAG
牛胰核糖核酸酶是一个内切核酸酶,专一地切在嘧啶核苷酸的3′-磷酸和其相邻核苷酸的5′-羟基之间,所以用它来分解上述AGUCGGUAG9核苷酸,得到AGU、C、GGU和AG4个产物。而核糖核酸酶 T1是一个专一地切在鸟苷酸的3′-磷酸和其相邻核苷酸的5′-羟基之间的内切核酸酶,它作用于上述9核苷酸,则得到AG、UCG、G和UAG4个产物。根据产物的性质,就可以排列出9核苷酸的一级结构。
除上述两种核糖核酸酶外,还有黑粉菌核糖核酸酶(RNase U2),专一地切在腺苷酸和鸟苷酸处,和高峰淀粉酶核糖核酸酶T1联合使用,可以测定腺苷酸在RNA中的位置。多头绒孢菌核糖核酸酶(RNase Phy)除了CpN以外的二核苷酸都能较快地水解,因此和牛胰核糖核酸酶合用可以区别Cp和Up在RNA中的位置。
生物功能和种类 20世纪40年代,人们从细胞化学和紫外光细胞光谱法观察到凡是 RNA含量丰富的组织中蛋白质的含量也较多,就推测RNA和蛋白质生物合成有关。RNA 参与蛋白质生物合成过程的有 3类:转移核糖核酸(tRNA)、信使核糖核酸(mRNA)和核糖体核糖核酸(rRNA)。
不同的RNA 有着不同的功能
其中rRNA是核糖体的组成成分,由细胞核中的核仁合成,而mRNA tRNA 在蛋白质合成的不同阶段分别执行着不同功能。
mRNA是以DNA的一条链为模板,以碱基互补配对原则,转录而形成的一条单链,主要功能是实现遗传信息在蛋白质上的表达,是遗传信息传递过程中的桥梁
tRNA的功能是携带符合要求的氨基酸,以连接成肽链,再经过加工形成蛋白质
具体请参阅高中生物第二册,遗传部分
RNA指 ribonucleic acid 核糖核酸
核糖核苷酸聚合而成的没有分支的长链。分子量比DNA小,但在大多数细胞中比DNA丰富。RNA主要有3类,即信使RNA(mRNA),核糖体RNA(rRNA)和转移RNA(tRNA)。这3类RNA分子都是单链,但具有不同的分子量、结构和功能。
在RNA病毒中,RNA是遗传物质,植物病毒总是含RNA。近些年在植物中陆续发现一些比病毒还小得多的浸染性致病因子,叫做类病毒。类病毒是不含蛋白质的闭环单链RNA分子,此外,真核细胞中还有两类RNA,即不均一核RNA(hnRNA)和小核RNA(snRNA)。hnRNA是mRNA的前体;snRNA参与hnRNA的剪接(一种加工过程)。自1965年酵母丙氨酸tRNA的碱基序列确定以后,RNA序列测定方法不断得到改进。目前除多种tRNA、5SrRNA、5.8SrRNA等较小的RNA外,尚有一些病毒RNA、mRNA及较大RNA的一级结构测定已完成,如噬菌体MS2RNA含3569个核苷酸。
RNA的种类:
在生物体内发现主要有三种不同的RNA分子在基因的表达过程中起重要的作用。它们是信使RNA(messengerRNA,mRNA)、转移(tranfer RNA,tRNA)、核糖体RNA(ribosomal RNA,rRNA)。RNA含有四种基本碱基,即腺嘌呤、鸟嘌呤、胞嘧啶和尿嘧啶。此外还有几十种稀有碱基。
RNA的一级结构主要是由AMP、GMP、CMP和UMP四种核糖核苷酸通过3',5'磷酸二酯键相连而成的多聚核苷酸链。天然RNA的二级结构,一般并不像DNA那样都是双螺旋结构,只有在许多区段可发生自身回折,使部分A-U、G-C碱基配对,从而形成短的不规则的螺旋区。不配对的碱基区膨出形成环,被排斥在双螺旋之外。RNA中双螺旋结构的稳定因素,也主要是碱基的堆砌力,其次才是氢键。每一段双螺旋区至少需要4~6对碱基对才能保持稳定。在不同的RNA中,双螺旋区所占比例不同。【RNA的二级结构】细胞内有三类主要的核糖核酸,即:mRNA、rRNA、tRNA。它们各有特点。在大多数细胞中RNA的含量比DNA多5~8倍。【大肠杆菌RNA的性质】
mRNA
生物的遗传信息主要贮存于DNA的碱基序列中,但DNA并不直接决定蛋白质的合成。而在真核细胞中,DNA主要贮存于细胞核中的染色体上,而蛋白质的合成场所存在于细胞质中的核糖体上,因此需要有一种中介物质,才能把DNA 上控制蛋白质合成的遗传信息传递给核糖体。现已证明,这种中介物质是一种特殊的RNA。这种RNA起着传递遗传信息的作用,因而称为信使RNA(message RNA,mRNA)。
mRNA的功能就是把DNA上的遗传信息精确无误地转录下来,然后再由mRNA的碱基顺序决定蛋白质的氨基酸顺序,完成基因表达过程中的遗传信息传递过程。在真核生物中,转录形成的前体RNA中含有大量非编码序列,大约只有25%序列经加工成为mRNA,最后翻译为蛋白质。因为这种未经加工的前体mRNA(pre-mRNA)在分子大小上差别很大,所以通常称为不均一核RNA(heterogeneous nuclear RNA,hnRNA)。
tRNA
如果说mRNA是合成蛋白质的蓝图,则核糖体是合成蛋白质的工厂。但是,合成蛋白质的原材料——20种氨基酸与mRNA的碱基之间缺乏特殊的亲和力。因此,必须用一种特殊的RNA——转移RNA(transfer RNA,tRNA)把氨基酸搬运到核糖体上,tRNA能根据mRNA的遗传密码依次准确地将它携带的氨基酸连结起来形成多肽链。每种氨基酸可与1-4种tRNA相结合,现在已知的tRNA的种类在40 种以上。
tRNA是分子最小的RNA,其分子量平均约为27000(25000-30000),由70到90个核苷酸组成。而且具有稀有碱基的特点,稀有碱基除假尿嘧啶核苷与次黄嘌呤核苷外,主要是甲基化了的嘌呤和嘧啶。这类稀有碱基一般是在转录后,经过特殊的修饰而成的。
1969年以来,研究了来自各种不同生物,:如酵母、大肠杆菌、小麦、鼠等十几种tRNA的结构,证明它们的碱基序列都能折叠成三叶草形二级结构(图3-23),而且都具有如下的共性:
DNA是脱氧核糖核酸
一般生命的遗传物质
DNA可以转录成mRNA(信使RNA,RNA的一种)
核糖体结合到mRNA上就可以合成蛋白质
tRNA是转运RNA
可以和氨基酸结合
把氨基酸运输到mRNA和核糖体上
参与蛋白质的合成
当然RNA的功能还有很多
许多病毒的遗传物质不是DNA而是RNA
RNA还有催化的功能
有人人为在生命的最初形式
RNA几乎是全能的
后来才进化出蛋白质和DNA来代替RNA
DNA是脱氧核糖核酸
tRNA是转运RNA,参与蛋白质的合成
RNA是核糖核酸